Emerging complexity in the denitrification regulatory network of Bradyrhizobium japonicum.
نویسندگان
چکیده
Bradyrhizobium japonicum is a Gram-negative soil bacterium symbiotically associated with soya bean plants, which is also able to denitrify under free-living and symbiotic conditions. In B. japonicum, the napEDABC, nirK, norCBQD and nosRZDYFLX genes which encode reductases for nitrate, nitrite, nitric oxide and nitrous oxide respectively are required for denitrification. Similar to many other denitrifiers, expression of denitrification genes in B. japonicum requires both oxygen limitation and the presence of nitrate or a derived nitrogen oxide. In B. japonicum, a sophisticated regulatory network consisting of two linked regulatory cascades co-ordinates the expression of genes required for microaerobic respiration (the FixLJ/FixK2 cascade) and for nitrogen fixation (the RegSR/NifA cascade). The involvement of the FixLJ/FixK2 regulatory cascade in the microaerobic induction of the denitrification genes is well established. In addition, the FNR (fumarase and nitrate reduction regulator)/CRP(cAMP receptor protein)-type regulator NnrR expands the FixLJ/FixK2 regulatory cascade by an additional control level. A role for NifA is suggested in this process by recent experiments which have shown that it is required for full expression of denitrification genes in B. japonicum. The present review summarizes the current understanding of the regulatory network of denitrification in B. japonicum.
منابع مشابه
The complete denitrification pathway of the symbiotic, nitrogen-fixing bacterium Bradyrhizobium japonicum.
Denitrification is an alternative form of respiration in which bacteria sequentially reduce nitrate or nitrite to nitrogen gas by the intermediates nitric oxide and nitrous oxide when oxygen concentrations are limiting. In Bradyrhizobium japonicum, the N(2)-fixing microsymbiont of soya beans, denitrification depends on the napEDABC, nirK, norCBQD, and nosRZDFYLX gene clusters encoding nitrate-,...
متن کاملGene Probe Designing for Evaluation of the Diversity of Bradyrhizobium japonicum Isolates
Many researchers consider the use of different probes for hybridization assays as suitable for studying the genetic diversity of nitrogen fixing bacteria. In this study for asessing genetic diversity among Bradyrhizobium japonicum isolates, two different probes (sucA and topA) chosen from the chromosomal genome of Bradyrhizobium strain USDA 110 were designed, evaluated by DNAMAN software and im...
متن کاملA multitude of CRP/FNR-like transcription proteins in Bradyrhizobium japonicum.
In Bradyrhizobium japonicum, the nitrogen-fixing soya bean endosymbiont and facultative denitrifier, three CRP (cAMP receptor protein)/FNR (fumarate and nitrate reductase regulatory protein)-type transcription factors [FixK(1), FixK(2) and NnrR (nitrite and nitric oxide reductase regulator)] have been studied previously in the context of the regulation of nitrogen fixation and denitrification. ...
متن کاملAnaerobic Reduction of Nitrate to Nitrous Oxide Is Lower in Bradyrhizobium japonicum than in Bradyrhizobium diazoefficiens
When soil oxygen levels decrease, some bradyrhizobia use denitrification as an alternative form of respiration. Bradyrhizobium diazoefficiens (nos+) completely denitrifies nitrate (NO3-) to dinitrogen, whereas B. japonicum (nos-) is unable to reduce nitrous oxide to dinitrogen. We found that anaerobic growth with NO3- as the electron acceptor was significantly lower in B. japonicum than in B. d...
متن کاملExpression of Bradyrhizobium japonicum cbb(3) terminal oxidase under denitrifying conditions is subjected to redox control.
Bradyrhizobium japonicum utilizes cytochrome cbb(3) oxidase encoded by the fixNOQP operon to support microaerobic respiration under free-living and symbiotic conditions. It has been previously shown that, under denitrifying conditions, inactivation of the cycA gene encoding cytochrome c(550), the electron donor to the Cu-containing nitrite reductase, reduces cbb(3) expression. In order to estab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical Society transactions
دوره 39 1 شماره
صفحات -
تاریخ انتشار 2011